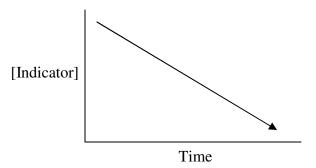

Body Fluid Dynamics

- Fluid composition
 - a. Intracellular
 - i. ↑ [K+]
 - ii. ↑ [Protein]
 - iii. ↓ [Na+], [Cl-], [Ca++]
- b. Extracellular
 - Plasma ↑ Protein
- Intersitial ↓ Protein
- ↑ cations

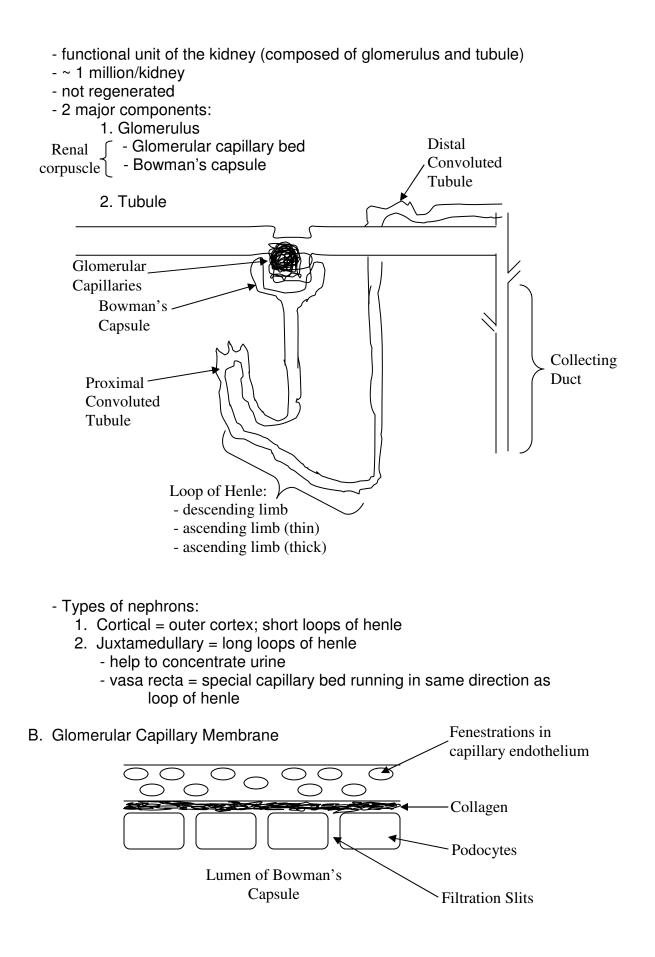
- Measuring fluid volumes
 - Indicator dilution principle \rightarrow


Inject 10 mg of indicator

Volume x concentration

Mass = Vol. x conc.(indic)...therefore 10mg = vol. x (.01mg/L)

- assumptions:


- 1. indicator has to spread throughout entire compartment
- 2. indicator has to disperse only in compartment of interest
- 3. Indicator is not metabolized or excreted

- Plasma Volume \rightarrow use radio labeled albumin
- ECF \rightarrow use substance that will not spread to cells (sucrose, radio labeled Na+ or Cl-
- Total body water \rightarrow use tritium or deuterium oxide
- ICF \rightarrow by subtraction _

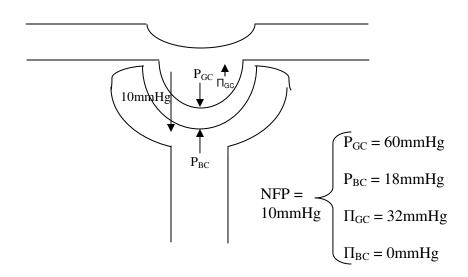
II. Kidneys

- Regulation of long term blood pressure
- Regulation of RBC production (EPO)
- Regulation of H20 electrolyte balance
- Regulation of osmolarity
- Regulation of acid/base balance
- Excretion of metabolic waste and foreign chemicals
- Glucose synthesis
- Ca++ and P regulation
- Vitamin D production
- A. Nephron

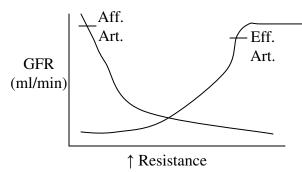
III. Renal Physiology

- ~1200mL of blood can move past glomeruli each minute
 - ~650mL is plasma
 - ~125 mL of the plasma is forced into renal tubules (equivalent to filtering the entire plasma volume up to 60x/day).
 - b/c of this much activity, the kidney's use ~20-25% of all O_2 in the body.
- Filtrate formed is the precursor to urine
 - filtrate = everything in plasma (minus proteins)...by the time it reaches the collecting ducts almost all H20, nutrients, and ions have been removed.
 - after all molecules are removed, this is considered urine.
- Kidneys filter ~180L/day...of this amount, only 1% usually leaves the body as urine...the other 99% returns to the general circulation.
- There are <u>3</u> major processes leading to urine formation:

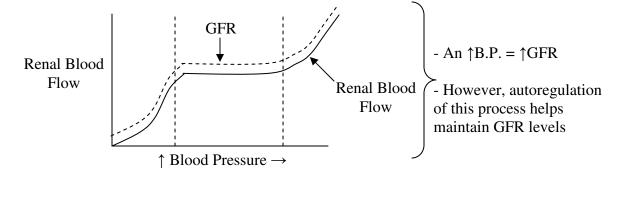
3 options here:

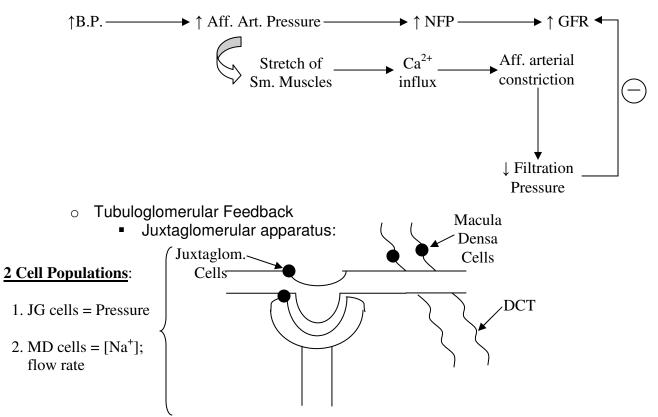

- Glomerular filtration] filtered; not reabsorbed
- \circ Tubular reabsorption \geq filtered; reabsorbed
- Tubular secretion $\int_{-\text{filtered}}$; secreted (K+)
- A. Glomerular Filtration
 - Passive process in which hydrostatic pressure forces fluids and solutes through the membrane.
 - Why is the glomerulus so efficient?
 - Membrane has ↑S.A. and is highly permeable to H20 and solutes.
 - Glomerular BP is much higher than in other capillary beds; results in ↑ <u>net filtration pressure.</u>
 - Since plasma proteins are too large to move out of capillaries this maintains the colloid osmotic pressure (Π_{cap}) of glomerular blood.
 - Maintaining the Π_{cap} prevents the loss of H20 into the renal tubules
 - \circ P_{GC} = Blood pressure in glomerular capillaries ~ 55mmHg
 - \circ Π_{GC} = Osmotic pressure in glomerular capillaries ~ 32mmHg
 - If plasma proteins are in the urine, this is usually indicative of a malfunction in the filtration membrane.
 - So what is Net Filtration Pressure (NFP)?
 - Pressure responsible for filtrate formation
 - \circ Involves the glomerular hydrostatic pressure (HP_G or P_{GC})
 - Chief factor pushing H20/solutes out of blood and across the filtration membrane.
 - \circ However, theoretically, the colloid osmotic pressure in Bowman's capsule (Π_{BC}) should pull the filtrate into the

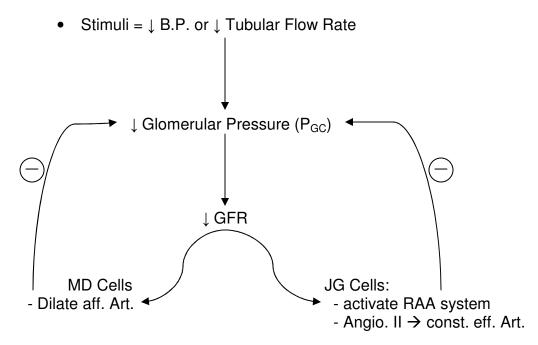
tubule...this pressure is essentially 0mmHg b/c no proteins enter the capsule.


- \circ HP_G is opposed by <u>2</u> factors:
 - Colloid osmotic pressure of glomerular blood (OP_G/Π_{GC})
 - Capsular hydrostatic pressure (HP_c or P_{BC})
- Using the value for each, NFP can be calculated:
 - NFP = $P_{GC} (\Pi_{GC} + P_{BC})$
 - NFP = 55 mmHg (30 mmHg + 15 mmHg)
 - NFP = 10 mmHg!!!
- So how much filtrate is formed each minute?
 - This is the glomerular filtration rate, or GFR.
 - <u>3</u> factors influence GFR:
 - S.A. available for filtration
 - Membrane permeability * This can be represented by the
 - NFP *

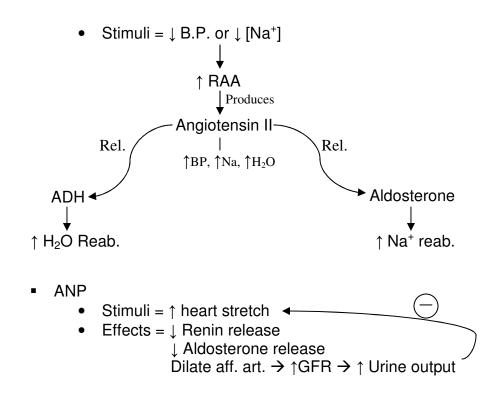
- formula:
 - $GFR = K_f x NFP$
 - Where K_f is the capillary filtration coefficient, a measure of memb. Permeability.


- So...
 - Long term regulation of GFR $\rightarrow \Delta K_f$ or Δ in filtration pressure
 - \uparrow B.P. \rightarrow \uparrow P_{GC} \rightarrow \uparrow GFR

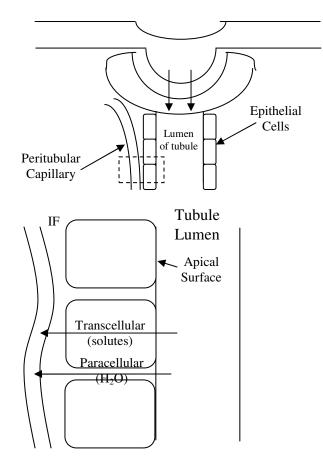

- Δ 's in resistance of arterioles also influences GFR:

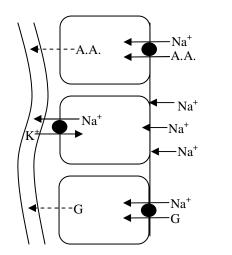


 another impt. Feature of GFR is that it can be maintained over a range of blood pressures:

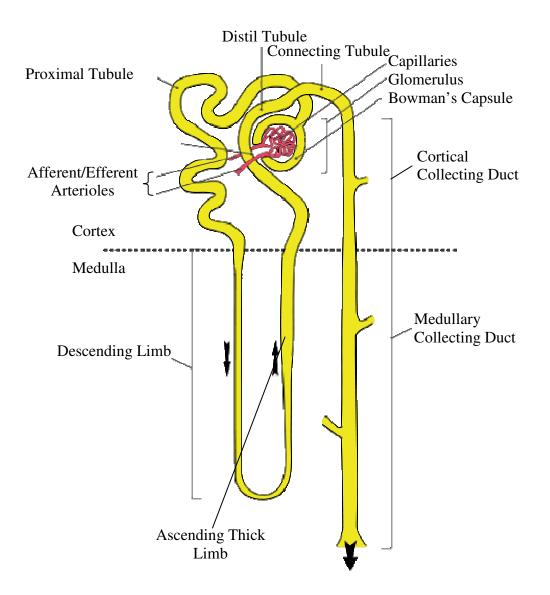


There are <u>2</u> mechanisms to maintain GFR (intrinsic):
Myogenic




- There are also <u>2</u> extrinsic controls:
 - SANS (stress response)
 - Major effect = constrict arterioles
 - Causes an ↑ in reabsorption and ↓ filtration
 - Epi/NE bind to α-AR in sm. muscle
 - Hormonal Control
 - RAA system (Angiotensin II)
 - Overall = \uparrow Na⁺ and H₂O reabsorption
 - Stimulates aldosterone prod/rel.
 - o Constricts eff. Art.
 - Directly ↑ Na⁺ reab. in proximal tubule by activating Na-K pump
 - Stimulates release of ADH
 - Aldosterone
 - Steroid hormone rel. from adrenal cortex
 - Acts on principle cells in dist. tubule/cort. collecting duct.
 - \uparrow Na⁺ reabsorption and \uparrow K⁺ secretion
 - Stimulates Na⁺-K⁺-ATPase on basolateral membrane
 - ↑ Na⁺ channels or carrier proteins on luminal membrane
 - ADH
 - Peptide hormone rel. from posterior pituitary
 - ↑ H₂O permeability in distil tubule
 - Insert aquaporins in luminal memb.

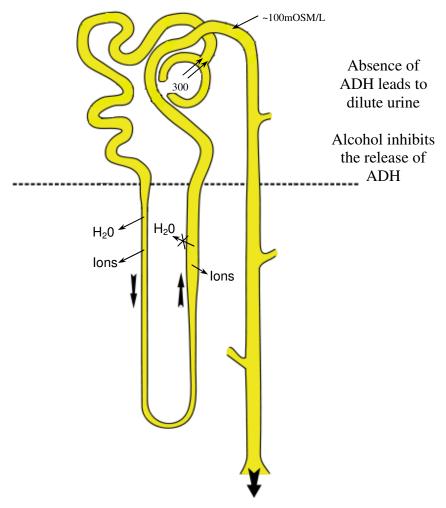
- B. Tubular Reabsorption/Secretion
 - Both act to alter the concentration of the filtrate
 - ~180L/day filtered \rightarrow 178L/day reabsorbed
 - Tubular reabsorption is the movement of filtered solutes and H₂0 from the tubule lumen into the plasma.



- Mechanisms:
 - o Diffusion down gradients
 - e.g. H₂0 by osmosis
 - Active transport
 - Primary
 - e.g. Na⁺
 - o Basolateral side
 - Na-K pump
 - o Luminal side
 - Facilitated diffusion
 - Secondary
 - e.g. Glucose/Amino Acids
 - Na-K pump provides stored energy
 - Glu-Na cotransport/symport on luminal side
 - Glu moves down [] gradient into blood

- Transport (tubular) maximum = the maximum amt. of a subst. that can be transported across the tubule membrane per unit time.
- Sometimes there is excess glucose that cannot be reabsorbed due to renal threshold.
- Renal Threshold = tubular load (mg/min) that exceeds the transport max.
- Other examples include: PO_4^{3-} and SO_4^{2-}

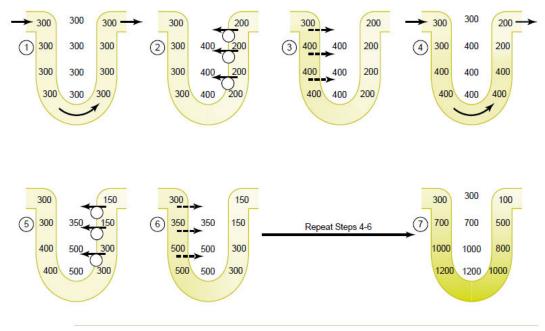
- C. Nephron Anatomy
 - Proximal Tubule
 - Largest reabsorbing segment (65-70% of filtrate)
 - Most secretion occurs here
 - Characteristics:
 - Brush border on luminal membrane
 - ↑ S.A. for reab.
 - ↑ density of carrier proteins
 - ↑ mitochondria
 - ↑ Na-K ATPase
 - Leaky epithelial. Junctions
 - o Na⁺, H₂0, Glu, Vitamins
 - Descending Thin Limb
 - o Few mitochondria
 - No brush border
 - $\circ \downarrow$ Active Transport
 - \circ Permeable to H₂0 + urea
 - Ascending Thick Limb \rightarrow diluting segment
 - Impermeable to H_20 + urea
 - ↑ Active Transport
 - Na-K-2Cl cotransporter (reabsorption)
 - Na-H counter transport (Na reabs; H secreted)
 - Reabsorption of Ca²⁺ and Mg²⁺
 - Distal Tubule \rightarrow site for regulation
 - Early DT = diluting
 - Impermeable to H_20 + urea
 - Site of JG apparatus (macula densa cells)
 - ↓ Active Transport
 - Late DT/Connecting Tubule/Cortical Collecting Duct
 - Impermeable to urea
 - Permeability to H₂0 varies
 - w/o $ADH \rightarrow$ impermeable
 - w/ADH \rightarrow permeable
 - Principle Cells
 - Na⁺ reabsorption Both are acted on by
 - K⁺ secretion aldosterone
 - Intercalated Cells
 - K⁺, HCO₃ reabsorption
 - H⁺ secretion
 - Medullary Collecting Duct
 - Last segment to act on filtrate
 - \circ Permeable to H₂0, controlled by ADH
 - Permeable to urea (allows for reabsorption)
 - \circ H⁺ secretion



- D. Regulation of Reabsorption
 - Local Factors:
 - o Glomerulotubular balance
 - \uparrow GFR \rightarrow \uparrow reabsorption
 - Peritubular Starling Forces
 - e.g. Angiotensin II → ↑ Reabsorption
 - via constricting eff. Arterioles → ↓ pressure in peritubular capillaries.
 - Nervous Control
 - See page 7
 - Hormones (humoral factors)
 - See page 7
- E. Clearance

- Volume of plasma that is cleared of a substance by the kidneys per unit time.
- Units = ml/min

$$C_{x} = \frac{U_{x} (V_{x})}{Px} ; \text{ where: } x = \text{substance tested} \\ C = Clearance \\ U = Urine \text{ concentration (mg/ml)} \\ V = Urine \text{ flow rate (ml/min)} \\ P = Plasma \text{ Concentration (mg/ml)}$$


- Any substance used to measure Clearance also measures GFR...the substance can be filtered, but not reabsorbed or secreted (Inulin/Creatinine).
 - If reabsorption occurs:
 - Clearance < GFR
 - If secreted into tubule:
 - Clearance > GFR
- IV. Dilution of Urine
 - Due to absence of ADH; loss of excess H₂0 through excretion in urine
 - $Plasma_{osm} = 300 \text{ mOSM/L}$
 - Filtrate_{osm} = 300 mOSM/L

- V. Concentration of Urine
 - Max_{OSM} of urine in humans ~ 1200 mOSM/L
 - Sea water ~ 2400 mOSM/L
 - 1L = 2400 mOSM of electrolytes
 - o 2L of urine
- A. Requirements
 - ADH
 - To reabsorb H₂0
 - High osmolarity in renal medullary interstitial fluid

Produced by countercurrent multiplier

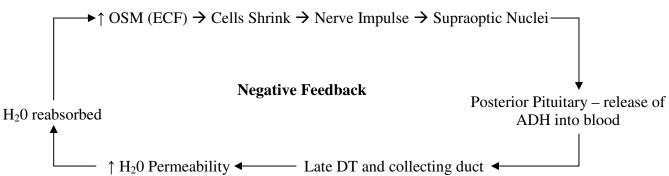
- CC flow in loop of Henle
- Active Transport (Na-K-2CI)
- Diffusion of H₂0; permeability

Countercurrent multiplier system in the loop of Henle for producing a hyperosmotic renal medulla. (Numerical values are in milliosmoles per liter.)

- Urea contributes ~500 mOSM/L to the Renal I.F. osmolarity
- B. Maintaining the Osmotic Gradient

_

- Vasa Recta → acts as the countercurrent exchanger (maintains, not creates)
- At bottom of loop, Plasma_{osm} = 1200 mOSM/L
 - At top of ascending loop, Plasma_{osm} = 310 mOSM/L ○ Vasodilators ↓ [urine]
- Other factors affecting the gradient:
 - o Length of the loop of Henle


- Longer = greater concentration of urine
- % of nephrons that juxtamedullary (long loops)
 - More = ↑ urine concentration
- Diet $\rightarrow \uparrow$ Protein $\rightarrow \uparrow$ osmolarity of urine

VI. Diuretics

- Substance that increases urine volume output
- Clinically used to ↓ edema and hypertension
 - Cheaper than Ca²⁺ channel blockers or ACE inhibitors
- Types:
 - Osmotic diuretics
 - Agents that are filtered, but not readily reabsorbed
 - e.g. manitol, sucrose, urea, *glucose diabetes
 - Loop diuretics
 - Work in ascending thick limb of loop of Henle
 - Block Na-K-2Cl cotransporter
 - e.g. Lasix[®] (furosemide)
 - Thiazides
 - Inhibits Na-CI reabsorption in early DT

Clinical \sim Competitive inhibitors of Aldosterone

- e.g. Spironolactone (aldactone)
- act on principle cells to prevent reabsorption
- Na- channel blockers
 - Collecting ducts
 - Prevents Na⁺ from being reabsorbed
- o Carbonic Anhydrase Inhibitors
 - Prevents reabsorption of Na⁺ and HCO₃
 - Acidosis can occur
- o Alcohol
 - ADH antagonist
- o Xanthenes
 - Caffeine
 - Theophylline
- VII. Control of Osmolarity of ECF
 - ~300 mOSM/L; 142 mOSM/L comes from Na⁺
 - Osmoreceptor-ADH System:
 - Main stimulus = Δ in osmolarity
 - Receptor cells = Osmoreceptors; Neurons in hypothalamus

- Other stimuli for ADH release:
 - ↓Blood Pressure (from baroreceptors)
 - ↓Cardiac stretch (via low pressure receptors)
- Thirst System:
 - Stimulus = Δ in osmolarity of ECF
 - Receptors = Osmoreceptors
 - ↓OSM_{ECF} → Osmoreceptors will stimulate thirst; occurs via the preoptic thirst center in the hypothalamus
 - o Secondary Stimuli
 - ↓Blood pressure; ↓ECF volume
 - Angiotensin II
 - Dryness of mucus membranes